
APPENDIX A: BMJ EQUATIONS FOR DEEP CONVECTION IN WRF 

The equations shown in this section are the ones used in the BMJ scheme in WRF Version 

3.3.1 and are based on Betts (1986) and Janjić (1994).  

In this cumulus scheme as explained in Betts (1986), the model first assesses whether there is 

Convective Available Potential Energy (CAPE) present and whether the cloud is sufficiently 

thick (i.e., 𝐿𝐵 − 𝐿𝑇 > 2 or 𝑝𝐵 − 𝑝𝑇 > 10ℎ𝑃𝑎 where 𝐿𝐵 and 𝐿𝑇 are the cloud-base and cloud-

top model levels and 𝑝𝐵 and 𝑝𝑇 the correspondent pressure levels; 𝐿𝐵 is defined as the model 

level just above the Lifting Condensation Level (LCL) and has to be at least 25hPa above the 

surface whereas 𝐿𝑇 is defined as the level at which CAPE is maximum (i.e., level of neutral 

buoyancy, LNB) for the air parcel with the maximum equivalent potential temperature 𝜃𝐸 in 

the depth [𝑃𝑆𝐹𝐶, 𝑃𝑆𝐹𝐶 × 0.6] where 𝑃𝑆𝐹𝐶 is the surface pressure). If that is not the case there 

will be no convection and the scheme will abort. If either or both of those conditions are met, 

the cloud depth is compared to a minimum depth given by 

 

If the cloud depth is smaller than 𝐷𝑚𝑖𝑛, shallow convection is triggered; otherwise, deep 

convection is considered. In both shallow and deep convection (Betts, 1986), temperature and 

humidity fields are adjusted as follows 

 

where ∆𝑇𝐵𝑀 and ∆𝑞𝐵𝑀 are the Betts' adjustment of temperature T and specific humidity q in a 

model layer. Thus, the problem is reduced to defining the reference temperature and specific 

𝐷𝑚𝑖𝑛 = 200ℎ𝑃𝑎 (
𝑃𝑆𝐹𝐶

1013ℎ𝑃𝑎
)       (𝐴1) 

∆𝑇𝐵𝑀 = 𝑇𝑅𝐸𝐹 − 𝑇 

∆𝑞𝐵𝑀 = 𝑞𝑅𝐸𝐹 − 𝑞 
(𝐴2) 



humidity reference profiles 𝑇𝑟𝑒𝑓 and 𝑞𝑟𝑒𝑓 for shallow and deep convection. In the BMJ scheme 

rainfall is only produced by deep convection which is the topic of this appendix. 

 

RAINFALL 

The BM scheme conserves enthalpy meaning that 

  
where 𝑐𝑃 is the specific heat at constant pressure for dry air assumed to be constant; 𝐿𝑊𝑉  is the 

latent heat of vaporisation for water vapour; ∆𝑝𝐿 is the thickness of the model layer 𝐿 in 

pressure coordinate. The total mass of water substance is conserved and hence in the original 

BM scheme (Betts, 1986) the precipitation is given by 

 

 

where 𝜌𝑤 is the density of liquid water; g is the acceleration of free fall. 

In Janjić (1994), a parameter called cloud efficiency, 𝐸, is introduced and is defined as  

 

with 

   ∑(𝑐𝑃∆𝑇𝐵𝑀 + 𝐿𝑊𝑉 ∆𝑞𝐵𝑀)∆𝑝𝐿

𝑝𝐵

𝑝𝑇

= 0       (𝐴3) 

∆𝑃𝐵𝑀 =
1

𝑔𝜌𝑤
 ∑∆𝑞𝐵𝑀∆𝑝𝐿      (𝐴4)  

𝐸 = 𝑐1

𝑇∆𝑆

𝑐𝑃 ∑∆𝑇𝐵𝑀∆𝑝𝐿
       (𝐴5) 

 



         

where 𝑇 is the weighted mean temperature of the cloudy air column; ∆𝑆 is the entropy change 

per unit area for the cloudy air column multiplied by g; 𝑇𝑚 is the mean temperature over the 

time-step; 𝑐1 is a non-dimensional constant estimated experimentally and set to 5. All 

summation symbols refer to summing over all cloudy layers [𝐿𝐵, 𝐿𝑇].  

The denominator of (A5) is proportional to the single time-step rainfall from a model layer in 

the original BM scheme, (A4), and hence the cloud efficiency reduces when there is a 

propensity for heavy rain, partly correcting the tendency to over-predict intense rainfall in the 

original BM scheme. 

 

In the default WRF-BMJ implementation, the precipitation, ∆𝑃, and the adjustments in 

temperature and humidity, ∆𝑇 and ∆𝑞, over one cumulus time-step ∆𝑡 are given by 

 

where 𝐹(𝐸) is a linear function of the cloud efficiency given by 

 

with 𝐸′ constrained to be in the range [𝐸1, 𝐸2]: 

𝑇 =
∑𝑇𝑚 ∆𝑝𝐿

𝑝𝑏𝑜𝑡𝑡𝑜𝑚 − 𝑝𝑡𝑜𝑝
 

 

∆𝑆 = ∑(
𝑐𝑃 ∆𝑇𝐵𝑀 + 𝐿𝑊𝑉 ∆𝑞𝐵𝑀

𝑇𝑚
) ∆𝑝𝐿 

 

𝑇𝑚 = 𝑇 +
∆𝑇𝐵𝑀

2
 

{

∆𝑃 = ∆𝑃𝐵𝑀 𝐹(𝐸) ∆𝑡 𝜏⁄

∆𝑇 = ∆𝑇𝐵𝑀 𝐹(𝐸) ∆𝑡 𝜏⁄

∆𝑞 = ∆𝑞𝐵𝑀 𝐹(𝐸) ∆𝑡 𝜏⁄
      (𝐴6) 

 

𝐹(𝐸) = (1 −
∆𝑆𝑚𝑖𝑛

∆𝑆
) [𝐹1 + (𝐹2 − 𝐹1) (

𝐸′ − 𝐸1

𝐸2 − 𝐸1
)]        (𝐴7) 

      (𝐴5) 

 



 

The constant 𝐹1 = 0.7 is determined experimentally and 𝐹2 = 1 for the chosen value of 𝜏 while 

𝐸1 = 0.2 is determined empirically in Janjić (1994) and 𝐸2 = 1 for the chosen value of 𝑐1. It is 

important to note that in Janjić (1994), 𝐹(𝐸) does not depend on the entropy change unlike the 

implementation we found in WRF version 3.3.1. In (A6) 𝜏 is the convective adjustment time-

scale set to 40 min (Betts, 1986). 

If the change in entropy is small (or even negative), i.e.  ∆𝑆 < ∆𝑆𝑚𝑖𝑛 = 10−4  𝐽𝐾−1𝑚−1𝑠−2, 

or very little (perhaps even negative) rainfall is obtained, i.e. ∑ ∆T ∆p𝐿  ≤  10−7 𝐾𝑘𝑔𝑚−1𝑠−2, 

shallow convection is triggered; otherwise, the BMJ scheme proceeds with deep convection. 

The reader is referred to Janjić (1994) for the documentation on shallow convection which we 

are not concerned with in this work. 

 

REFERENCE PROFILES FOR DEEP CONVECTION 

The first-guess potential temperature reference profile 𝜃𝑅𝐸𝐹
𝑓

 for deep convection used in the 

BMJ scheme is assumed to have a vertical gradient that is a fixed fraction 𝛼 of the vertical 

gradient of saturated equivalent potential temperature 𝜃𝐸𝑆 following a moist virtual adiabat (i.e. 

isopleth of virtual equivalent potential temperature) from the cloud base up to the freezing 

level. Above the freezing level, 𝜃𝑅𝐸𝐹
𝑓

 slowly approaches and reaches the environmental 𝜃𝐸𝑆 at 

the cloud top. Thus, 𝜃𝑅𝐸𝐹 given is prescribed by 

     

𝐸′ =

{
 
 

 
 
𝐸1             𝑖𝑓   𝐸 ≤ 𝐸1

𝐸     𝑖𝑓 𝐸1 ≤ 𝐸 ≤ 𝐸2 
  

𝐸2             𝑖𝑓   𝐸 ≥ 𝐸2

 

𝜃𝑅𝐸𝐹
𝑓

(𝑝𝐵) = 𝜃(𝑝0, 𝑇0) 

 



 

where  𝑝𝑀 denotes the pressure at the freezing model level, 𝑝𝐿 denotes the pressure at any 

model level in the cloudy air column (such that L increases upwards from 𝑝𝐵 to 𝑝𝑇) and 𝑝0 and 

𝑇0 the pressure and temperature at the level from which the air parcel is lifted. 𝜃𝐸  is the 

equivalent potential temperature and 𝑒𝐵
∗  the saturated partial pressure of water vapour at the 

temperature 𝑇𝐵 of the cloud base. In the first equation the constant 𝛼, according to Betts (1986), 

is equal to 0.85 but in the default WRF implementation it is set to 0.9, corresponding to a 

steeper 𝑑𝜃𝑅𝐸𝐹/𝑑𝑝 or a statically more stable profile. This choice of 0.9 for 𝛼 was made when 

the scheme was tuned to the model over the North American region (Zaviša, pers. comm.). 

The corresponding first-guess reference temperature profile is 

     

with 

     

where Π(𝑝𝐿) is the Exner’s function (divided by 𝑐𝑃) for pressure 𝑝𝐿 and  R is the specific gas 

constant for dry air. 

At pressure 𝑝𝐿 equal or lower than 200hPa, the humidity field is not adjusted by the BMJ 

scheme. At pressure 𝑝𝐿 larger than 200hPa in the convecting column, the first-guess reference 

specific humidity, 𝑞𝑅𝐸𝐹
𝑓 (𝑝𝐿), is prescribed by the lifting condensation level,  𝑝𝐿 + ℘(𝑝𝐿), of an 

air parcel with 𝜃𝑅𝐸𝐹(𝑝
𝐿
) and 𝑞𝑅𝐸𝐹

𝑓 (𝑝𝐿) at pressure 𝑝𝐿, 

𝜃𝑅𝐸𝐹
𝑓

(𝑝𝐿) = 𝜃𝑅𝐸𝐹
𝑓

(𝑝𝐿−1) + 𝛼  𝜃𝐸𝑆(𝑝𝐿) − 𝜃𝐸𝑆(𝑝𝐿−1)  

𝜃𝑅𝐸𝐹
𝑓

(𝑝𝐿) = 𝜃𝐸𝑆(𝑝𝐿) −
𝑝𝐿 − 𝑝𝑇

𝑝𝑀 − 𝑝𝑇

 𝜃𝐸𝑆(𝑝𝑀) − 𝜃𝑅𝐸𝐹
𝑓

(𝑝𝑀)  

𝑝𝑀 ≤ 𝑝𝐿 < 𝑝𝐵: 

𝑝𝑇 ≤ 𝑝𝐿 < 𝑝𝑀: 
(A8) 

𝑇𝑅𝐸𝐹
𝑓 (𝑝𝐿) = 𝜃𝑅𝐸𝐹

𝑓 (𝑝𝐿) Π(𝑝𝐿)      (𝐴9) 

 

Π(𝑝𝐿) = (
105Pa

𝑝𝐿
)

−𝑅/𝑐𝑝

 

 



 

where 𝑝200 is the pressure of a model level just smaller or equal to 200hPa. With the help of 

Tetens' formula (Tetens, 1930), the saturated specific humidity 𝑞∗ is given by 

 

The more negative ℘(𝑝𝐿) is, the drier the reference profile is at pressure level 𝑝𝐿. ℘(𝑝𝐿) is 

piecewise linearly interpolated between the values at the cloud bottom, ℘𝐵, freezing level, ℘𝑀, 

and cloud top, ℘𝑇, which are in turn parameterized as linear functions of cloud efficiency E as 

follows: 

 

  

The constants in Pa above were determined by Janjic (1994) and are not varied in this work. In 

the WRF version 3.3.1 implementation, the parameter 𝐹𝑅 is set to 1 while 𝐹𝑆 is set to 0.85, an 

empirically determined value over continental USA (Zaviša, pers. comm.), while in the Janjić 

(1994) 𝐹𝑆 = 0.6. Evidently, with a higher value of 𝐹𝑆, the formulation yields more negative 

℘(𝑝𝐿) and a drier reference humidity profile for each cloud efficiency, 𝐸 <  𝐸2. 

 

 

{

𝑞𝑅𝐸𝐹(𝑝𝐿) = 𝑞(𝑝𝐿)                                                                     𝑖𝑓 𝑝𝐿 ≤ 𝑝200

𝑞𝑅𝐸𝐹
𝑓 (𝑝𝐿) = 𝑞∗ (𝜃𝑅𝐸𝐹

𝑓 (𝑝𝐿), 𝑝𝐿 + ℘(𝑝𝐿))                             𝑖𝑓 𝑝𝐿 > 𝑝200

          (𝐴10) 

𝑞∗ (𝜃𝑅𝐸𝐹
𝑓 (𝑝𝐿), 𝑝𝐿 + ℘(𝑝𝐿)) =  (

379.90516 Pa

𝑝𝐿 + ℘(𝑝𝐿)
)𝐸𝑋𝑃

{
 

 

17.2693882

(

 
𝜃𝑅𝐸𝐹

𝑓 (𝑝𝐿) −
273.16 K

Π(𝑝𝐿 + ℘(𝑝𝐿))

𝜃𝑅𝐸𝐹
𝑓

(𝑝𝐿) −
35.86 K

Π(𝑝𝐿 + ℘(𝑝𝐿)))

 

}
 

 

       (𝐴11) 

℘𝑀 = (−5875 𝑃𝑎 ) [𝐹𝑆 + (𝐹𝑅 − 𝐹𝑆) (
𝐸′ − 𝐸1

𝐸2 − 𝐸1
)] 

℘𝐵 = (−3875 𝑃𝑎 ) [𝐹𝑆 + (𝐹𝑅 − 𝐹𝑆) (
𝐸′ − 𝐸1

𝐸2 − 𝐸1
)] 

℘𝑇 = (−1875 𝑃𝑎 ) [𝐹𝑆 + (𝐹𝑅 − 𝐹𝑆) (
𝐸′ − 𝐸1

𝐸2 − 𝐸1
)] 

(𝐴12) 

(𝐴13) 

(𝐴14) 



CONSERVATION OF ENTHALPY 

To conserve enthalpy in the convecting column, the first-guess reference temperature and 

specific humidity profiles need to be corrected to yield the final reference profiles. The first-

guess reference temperature is corrected by a constant 𝑇ε to get: 

  

For 𝑝𝐿 > 𝑝200, 

     

The first-guess reference specific humidity profile is given by (A10). Taking the difference 

between (A16) and (A10) and using (A9), we define 

 

 

where 

 

By combining equations (A15) and (A17) with (A2), we can write 

  

      𝑇𝑅𝐸𝐹(𝑝𝐿) = 𝑇𝑅𝐸𝐹
𝑓 (𝑝𝐿) − 𝑇ε      (𝐴15) 

 

𝑞𝑅𝐸𝐹(𝑝𝐿) = 𝑞∗ (𝜃𝑅𝐸𝐹(𝑝𝐿), 𝑝𝐿
+ ℘(𝑝

𝐿
))     (𝐴16) 

 

𝑞ε = 𝑞𝑅𝐸𝐹
𝑓 (𝑝𝐿) − 𝑞𝑅𝐸𝐹(𝑝𝐿) = (

𝜕𝑞∗

𝜕𝜃
)
𝑝
(𝜃𝑅𝐸𝐹

𝑓 (𝑝𝐿) − 𝜃𝑅𝐸𝐹(𝑝𝐿))     

 

⇔ 𝑞ε =  (
𝜕𝑞∗

𝜕𝑇
)
𝑝
(𝑇𝑅𝐸𝐹

𝑓 (𝑝𝐿) − 𝑇𝑅𝐸𝐹(𝑝𝐿)) = (
𝜕𝑞∗

𝜕𝑇
)
𝑝
 𝑇ε =  𝛾 𝑇ε    (𝐴17) 

 

𝛾 = (
𝜕𝑞∗

𝜕𝑇
)
𝑝

≅ 𝑞𝑅𝐸𝐹
𝑓 (𝑝𝐿)

4098.03 K

(𝜃𝑅𝐸𝐹
𝑓 (𝑝𝐿)Π (𝑝

𝐿
+ ℘(𝑝𝐿)) − 35.86 K)
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Δ𝑇𝐵𝑀𝐽 = Δ𝑇𝑓 − 𝑇ε 

Δ𝑞𝐵𝑀𝐽 = Δ𝑞𝑓 − 𝑞ε 

 



where 

  

Conservation of enthalpy, (A3), requires that 

  

The cloudy column above 200hPa (if the cloud top is high enough in the first place) is treated 

separately from the rest of the cloudy column as the humidity field is not adjusted by the BMJ 

scheme when the pressure 𝑝𝐿 is equal or lower than 200hPa (i.e. Δ𝑞𝐵𝑀𝐽 = 0). Hence, the 

correction to the first-guess reference temperature, 𝑇ε, is given by 

     

 
With the reference temperature and specific humidity profiles defined through equations (A8), 

(A9), (A10), (A11), (A15) and (A18), the convective adjustment in temperature and specific 

humidity over one time-step can be computed by equations (A2) and (A6). 

Δ𝑇𝑓 = 𝑇𝑅𝐸𝐹
𝑓 (𝑝𝐿) − 𝑇(𝑝𝐿) 

Δ𝑞𝑓 = 𝑞𝑅𝐸𝐹
𝑓 (𝑝𝐿) − 𝑞(𝑝𝐿) 

 

   ∑(𝑐𝑃Δ𝑇𝐵𝑀𝐽 + 𝐿𝑊𝑉 Δ𝑞𝐵𝑀𝐽)∆𝑝𝐿

𝑝𝐵

𝑝𝑇

= 0  

 

⇔  ∑(𝑐𝑃 Δ𝑇𝑓 + 𝐿𝑊𝑉  Δ𝑞𝑓)∆𝑝𝐿

𝑝𝐵

𝑝𝑇

= ∑(𝑐𝑃𝑇ε + 𝐿𝑊𝑉 𝑞ε)∆𝑝𝐿

𝑝𝐵

𝑝𝑇

 

 
 

 ⇔  𝑇ε = 
∑ (𝑐𝑃 Δ𝑇𝑓 + 𝐿𝑊𝑉  Δ𝑞𝑓)∆𝑝𝐿

𝑝𝐵
𝑝𝑇

∑ (𝑐𝑃 + 𝐿𝑊𝑉 𝛾)∆𝑝𝐿
𝑝𝐵
𝑝𝑇

 

 

 

{
 
 
 

 
 
 

                                               

𝑇ε =
∑ (𝑐𝑃 Δ𝑇𝑓 + 𝐿𝑊𝑉 ∆𝑞𝑓

)∆𝑝𝐿

𝑝𝑇
𝑝𝐵

𝑐𝑃  ∑ ∆𝑝𝐿

𝑝𝑇
𝑝𝐵

                                        𝑖𝑓 𝑝𝐿 ≤ 𝑝200  

𝑇ε =
∑ (𝑐𝑃 Δ𝑇𝑓 + 𝐿𝑊𝑉 ∆𝑞𝑓

)∆𝑝𝐿

𝑝𝑇
𝑝𝐵

∑ (𝑐𝑃 + 𝐿𝑊𝑉 𝛾 )∆𝑝𝐿

𝑝𝑇
𝑝𝐵

                                         𝑖𝑓 𝑝𝐿 > 𝑝200

             (𝐴18) 


